If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2+50x-93=0
a = 8; b = 50; c = -93;
Δ = b2-4ac
Δ = 502-4·8·(-93)
Δ = 5476
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{5476}=74$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(50)-74}{2*8}=\frac{-124}{16} =-7+3/4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(50)+74}{2*8}=\frac{24}{16} =1+1/2 $
| 0=v/3+2 | | -2x+20=2(x-2) | | X+2y=125 | | 7(w+1)=-3w-3 | | 37+58+x=180 | | 2y-21=-5(y+7) | | 3y+10+y=180 | | 48+78+x=90 | | Y=1.8x-4.2 | | -18=6x+7x-16 | | 8=-4p-4 | | 130+y=180 | | -7-3n=26 | | 3.14=6.28x | | X+80+40=70+y | | 82+32+x=180 | | 8x-4-2x=-10x | | 9x-3-8x=30 | | 15^6x-7=87 | | 153+12m=345 | | -.2b^2+15b-250=0 | | 6(x+2)=24x= | | -6=k/6-7 | | 10+k/1=10 | | x^2+5x=−9 | | x^+5x=−9 | | 8x+4=7x+13 | | 6=b8b=48 | | 4x^2+64x-138=0 | | (v+6)^2=2v^2+10v+28 | | (v+6)^2=2v^+10v+28 | | 144+9m=252 |